Pollaczek–Khinchine formula

In queueing theory, a discipline within the mathematical theory of probability, the Pollaczek–Khinchine formula is a formula for the mean queue length in a model where jobs arrive according to a Poisson process and service times have a general distribution (an M/G/1 queue). It can also be used to calculate the mean waiting time in such a model.

The formula was first published by Felix Pollaczek[1] and recast in probabilistic terms by Aleksandr Khinchin[2] two years later.[3][4]

Mean queue length

The formula states that the mean queue length L is given by[5]

L = \rho %2B \frac{\rho^2 %2B \lambda^2 \operatorname{Var}(S)}{2(1-\rho)}

where

For the mean queue length to be finite it is necessary that \rho < 1 as otherwise jobs arrive faster than they leave the queue. "Traffic intensity," ranges between 0 and 1, and is the mean fraction of time that the server is busy. If the arrival rate \lambda_a is greater than or equal to the service rate \lambda_s, the queuing delay becomes infinite. The variance term enters the expression due to Feller's paradox.[6]

Mean waiting time

If we write W for the mean time a customer spends in the queue, then W=W'%2B\mu^{-1} where W' is the mean waiting time (time spent in the queue waiting for service) and \mu is the service rate. Using Little's law, which states that

L=\lambda W

where

so

W =  \frac{\rho %2B \lambda \mu \text{Var}(S)}{2(\mu-\lambda)}.

We can write an expression for the mean waiting time as[7]

W' = \frac{W}{\lambda} - \mu^{-1} = \frac{\rho %2B \lambda \mu \text{Var}(S)}{2(\mu-\lambda)}.

References

  1. ^ Pollaczek, F. (1930). "Über eine Aufgabe der Wahrscheinlichkeitstheorie". Mathematische Zeitschrift 32: 64–100. doi:10.1007/BF01194620. 
  2. ^ Khintchine, A. Y (1932). "Mathematical theory of a stationary queue". Matematicheskii Sbornik 39 (4): 73–84. http://mi.mathnet.ru/rus/msb/v39/i4/p73. Retrieved 2011-07-14. 
  3. ^ Takács, Lajos (1971). "Review: J. W. Cohen, The Single Server Queue". Annals of Mathematical Statistics 42 (6): 2162–2164. doi:10.1214/aoms/1177693087. 
  4. ^ Kingman, J. F. C. (2009). "The first Erlang century—and the next". Queueing Systems 63: 3–4. doi:10.1007/s11134-009-9147-4.  edit
  5. ^ Haigh, John (2002). Probability Models. Springer. p. 192. ISBN 1852334312. 
  6. ^ Cooper, Robert B.; Niu, Shun-Chen; Srinivasan, Mandyam M. (1998). "Some Reflections on the Renewal-Theory Paradox in Queueing Theory". Journal of Applied Mathematics and Stochastic Analysis 11 (3): 355–368. http://www.cse.fau.edu/~bob/publications/CNS.4h.pdf. Retrieved 2011-07-14. 
  7. ^ Harrison, Peter G.; Patel, Naresh M. (1992). Performance Modelling of Communication Networks and Computer Architectures. Addison-Wesley. p. 228. ISBN 0201544199.